Spontaneous voltage oscillations and response dynamics of a Hodgkin-Huxley type model of sensory hair cells
نویسندگان
چکیده
We employ a Hodgkin-Huxley type model of basolateral ionic currents in bullfrog saccular hair cells to study the genesis of spontaneous voltage oscillations and their role in shaping the response of the hair cell to external mechanical stimuli. Consistent with recent experimental reports, we find that the spontaneous dynamics of the model can be categorized using conductance parameters of calcium activated potassium, inward rectifier potassium, and mechano-electrical transduction ionic currents. The model is demonstrated to exhibit a broad spectrum of autonomous rhythmic activity, including periodic and quasiperiodic oscillations with two independent frequencies as well as various regular and chaotic bursting patterns. Complex patterns of spontaneous oscillations in the model emerge at small values of the conductance of Ca(2+) activated potassium currents. These patterns are significantly affected by thermal fluctuations of the mechano-electrical transduction current. We show that self-sustained regular voltage oscillations lead to enhanced and sharply tuned sensitivity of the hair cell to weak mechanical periodic stimuli. While regimes of chaotic oscillations are argued to result in poor tuning to sinusoidal driving, chaotically oscillating cells do provide a high sensitivity to low-frequency variations of external stimuli.
منابع مشابه
Effect of voltage dynamics on response properties in a model of sensory hair cell
Sensory hair cells in auditory and vestibular organs rely on active mechanisms to achieve high sensitivity and frequency selectivity. Recent experimental studies have documented self-sustained oscillations in hair cells of lower vertebrates on two distinct levels. First, the hair bundle can undergo spontaneous mechanical oscillations. Second, somatic electric voltage oscillations across the bas...
متن کاملA new circuit model for the Parameters in equations of low power Hodgkin-Huxley neuron cell
In this paper, α and β parameters and gating variables equations of Hodgkin-Huxley neuron cell have been studied. Gating variables show opening and closing rate of ion flow of calcium and potassium in neuron cell. Variable functions α and β, are exponential functions in terms of u potential that have been obtained by Hodgkin and Huxley experimentally to adjust the equations of neural cells. In ...
متن کاملMemristor Bridge Synapse Application for Integrate and Fire and Hodgkin-Huxley Neuron Cell
Memory resistor or memristor is already fabricated successfully using current nano dimension technology. Based on its unique hysteresis, the amount of resistance remains constant over time, controlled by the time, the amplitude, and the polarity of the applied voltage. The unique hysteretic current-voltage characteristic in the memristor causes this element to act as a non-volatile resistive me...
متن کاملStochastic Differential Equation Model for Cerebellar Granule Cell Excitability
Neurons in the brain express intrinsic dynamic behavior which is known to be stochastic in nature. A crucial question in building models of neuronal excitability is how to be able to mimic the dynamic behavior of the biological counterpart accurately and how to perform simulations in the fastest possible way. The well-established Hodgkin-Huxley formalism has formed to a large extent the basis f...
متن کاملThe receptor potential in type I and type II vestibular system hair cells: a model analysis.
Several studies have shown that type I hair cells present a large outward rectifying potassium current (g(K,L)) that is substantially activated at the resting potential, greatly reducing cell input resistance and voltage gain. In fact, mechanoelectrical transducer currents seem not to be large enough to depolarize type I hair cells to produce neurotransmitter release. Also, the strongly nonline...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2011